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Abstract—Perturbation analysis of higher order boundary-layer effects for convection flow over a semi-
infinite vertical uniform flux surface is presented. Using asymptotic matching technique, three term inner and
outer expansions have been obtained. Eigenvalues and their eigenfunctions associated with the inner
expansions have also been investigated and it has been shown that their contribution to these three term
expansions is identically zero. The numerical results for Pr = 0.733 and 6.7 show that the higher order
corrections to the local temperature difference and the local skin friction are negative but are positive to the
local Nusselt number. Considerations of global momentum and buoyancy indicate an indeterminacy of 0(1)
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in the expression

NOMENCLATURE
BL, boundary layer;
Cps specific heat of the fluid;
D, total drag on plate between leading edge
and local x {per side per unit width};
ATx?
Gr,, local Grashof number, gﬁ'—‘z—v— ;
4
Gr*, local flux Grashof number, gﬁ;%c_ ;
G, modified Grashof number, 4( 4"' ) ;
G*  modified flux Grashof number,
Gr¥ M3
5( = ) ;
g gravitational acceleration;
h, heat-transfer coefficient ;
k, thermal conductivity;
Nu,, local Nusselt number, hx/k;
P, pressure;
Pr,  Prandt! number, EEB ;
4., local heat flux from plate;
0, total heat-transfer rate from plate
between leading edge and local x
{per side and per unit width);
r, polar radial coordinate;
t, temperature;
ty, temperature of ambient fluid;
T, =(t—t,/AT);
u, x component of velocity ;
7, y component of velocity;
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for total drag.

vertical coordinate;

x’
; ka 1/4
X, 1 /5( s
gﬂtqw
¥, horizontal coordinate.
Greek symbols
B coefficient of thermal expansion ;
d, characteristic boundary-layer thickness ;
AT, characteristic temperature difference
across the boundary layer;
e, perturbation parameter, =4J/x = 5/G*;
m, = y/d;
0, angular coordinate measured from plate;
i, dynamic viscosity;
v, the kinematic viscosity ;
o, density of fluid ;
‘¥, stream function;
w, resultant flow velocity.

1. INTRODUCTION

THE ANALYTICAL studies of higher order boundary-
layer effects for natural convection flow around a semi-
infinite vertical isothermal surface are many [1-4]. In
all these studies, the classical boundary-layer solution
due to Pohlhausen [5] is taken as the leading term in
the asymptotic expansion for large Grashof number of
the full solution of the problem, with the expansion
parameter as 1/G.

Yang and Jerger [ 1] obtained first order corrections
both for the semi-infinite and finite vertical plate. Their
calculated correction to the Nusselt number obtained
from the boundary-layer theory is negative. This, as
pointed out by Gebhart in a comment following their
paper, is at variance with the experimental data at low
Grashof numbers, which indicates values of Nusselt
number higher than predicted by boundary-layer
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theory. This matter was later taken up by Hieber [3],
who on the basis of global energy considerations
showed that the boundary-layer expansion gives rise
to an additional term which results in a net positive
first order correction to the total heat-transfer rate. He
also pointed out an error due to improper matching in
the second order correction obtained earlier by Kad-
ambi [2] and, in addition, obtained the first three
eigenvalues and the corresponding eigenfunctions ap-
pearing in the boundary-layer expansion. The multip-
licative constants associated with these eigenfunctions
are, however, indeterminate. The analysis of Riley and
Drake [4]is similar to that of Kadambi [ 2] and has the
same improper matching conditions in the second
order equations.

All of the above studies are for a surface with
uniform temperature. However, an important practi-
cal and experimental circumstance in many natural
convection flows is that generated adjacent to a surface
dissipating heat uniformly. There is no prior in-
vestigation of the higher order effects for this con-
dition. In the present paper. we obtain perturbation
solutions, in terms ol perturbation parameter, & =
5/G* Matched asymptotic expansions are used to
construct inner and outer expansions for velocity,
temperature and pressure. The first three terms of the
sertes are calculated for both air (Pr = 0.733) and
water (Pr = 6.7). The eigenfunctions associated with
the boundary-layer expansions are considered und itis
shown that their contribution to the solution is
identically zero.

2. ASYMPTOTIC EXPANSIONS

The present problem is formulated on the basis of a
semi-infinite vertical surface with the origin at the
leading edge. The x axis is vertically upward and y is
perpendicular to the surface. Heat is dissipated uni-
formly at the surface. Employing the Boussinesq
approximation, neglecting the viscous dissipation and
the pressure terms in the energy equation, the govern-
ing equations are:

5:}*1 (:—l =0 {1
iy Oy
(u ¢ + v; )u
ox Jy
; nl a2 18
= v(:(~,+.~»; )u+gﬂi(tmt1)~—~ ﬂp 2)
Ex? Ayt p éx
é ¢ &8 1ép
N e 4 e — e 2 3
(u6x+L6_v)l ‘(E.\'+F\3) pCy ©)
¢ ¢ vt o
S G QY T T 4
(u 6.\'+Uc7y) Pr((”.\'2+<“’,\'2 I @)
subject to boundary conditions:
'»‘1[ .
W=0=p, _é}z —il’(v at y=0,x=0  (5)
o ot
M g=p, S=0at y=0,x<0  (6)
ay ay

u=p~0,t~t_, p~p, as y— oo and upstream. {7)

Analysis of equations (1)-(4) indicates that a small
term of O(1/G*) multiplies the highest derivative
terms, those representing diffusion of momentum and
of the thermal energy. When G* — oo these terms
disappear, and no solution can then satisfy all the
boundary conditions. This is a singular perturbation
situation which may be treated by the method of
matched asymptotic expansion.

The appropriate inner expansions (without the
eigenfunctions to be considered later) in the boundary
layer, and the outer expansions, are:

inner:
W= g+ el i,
= Udf(n,2)
= Us[ folm+efim+efam+..] 8)

t—t, =ATT{n.¢)
= AT[Tym+eTim+Tn+..]

p—p, = pUP(n, &)= pU?[e?Py(n)+.. ] (10
outer:

Y=ot it (1

t—t, = To+ T+ T +... (12)

p—p.=Po+ P +Py+... (13)

where U = vG*?/5x, & = Sx/G*, AT = ¢,8/k and g
= y/8. The perturbation parameter, ¢ = d/x = 5/G*,is
determined by consideration of the order of magnitude
of the normal velocity component at the outer edge of
the boundary layer.

2.1. Perturbation equations

We now define streamfunction ¥ so thatu = ‘¥, and
p = —W_. The continuity equation, {1), is then auto-
matically satistied. From (8}, the velocity components
u and v are written as

u = b’(./'0’+'f‘{+1:2j5+.,,) (14)

~v=U[@fg~fome—~eXfin+..] (15)
Equations {2}-(4) are now evaluated in terms of
variables defined in (9), (10), {(14) and (15) and
perturbation equations are obtained by collecting
terms with like powers of . The following successive
approximations are obtained.

Zeroth order. Collecting terms of the order ¢°, we
obtain the following classical uniform flux boundary-
layer equations.

I =37+ 4o s + Ty =0 (16)
et HoTo—Tofg =0 (7

subject to boundary conditions:

F 0= f10) = Ty{xc) = foloo) = Tg0)+1 = 0.
(18)

In the outer region, it can be easily shown, see for
example, Kadambi [2], that o = 0 = Ty, = P,

First order. To obtain first order equations, it is first
necessary to match the zeroth order boundary-layer
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solution s, to the first order outer solution ;. This, as
shown in [1-3], leads to

4/5

- - r
Vzl//l = 09 l/ll(u:u) = VAO(})

where A, = fy(oc) and the values of the stream
function at 0 = 0 and ) = = correspond to the match-
ing and boundary condition respectively. Solution to
(19)is given by

* Jl(n:n) = 0(19)

(20)

Using Bernoulli’s equation in the outer inviscid region,

S (340)° (v'Z(X’Z”

— 1,2 1 {2y
Pr=—zpw 2P Gn? )5 X) r ) en

Further, for the outer, isothermal region T, =0
Noting that, as 6 -0, r = x[1 + 0(£?n*)] and f = en

+0(e*n?), the behavior of yf, and P, in the matching
region is determined to be

_ 0 4 dn 4 5, )
1//1840— UdA,| 1 ~3 qcot? +Sdf n+. l (22)
and

~ pU?

Piy o= —%“sz = (A4 [L+0* ) +.. ]

23)

From the inner and outer expansions of the stream
functions, equations (8) and (11), corresponding ex-
pansions for the velocity components can be derived.
Matching of the two term inner expansion of the u
component as r — oo, 0 # 0, with the concomitant
two term outer expansion as § — 0, gives f{(c0) =
$£A4,cotn/5. The first order inner problem may be
written as:

ST+ =2 fi+ T, =0 (24)
T T-Tof =0 (25)

subject to boundary conditions:
[O)=0=fi0) = Ty(2) =[O, 0

i) = 5/40‘30”5/5

In particular, from (24) to (26), f; ~ $4,ncotn/5+ A,
where A4, is a numerically determined constant.

Second order. Knowing the asymptotic behavior of
/i as n— oo, and matching the two term inner and
outer stream function, it is easily deduced that

Vz'pz =0, l-/;zm:m =5vA,, JZ(M:n) =0 (27)
The solution to (27) is
_ 0
l//2=5Alv(1—E). (28)
As before, Bernoulli’s equation gives
5 _ 444, (v“z(X o/5 4
P,=— 55in7/S ) 7) pcoss(0—n).
(29)

Finally, the second order governing equations for
the boundary layer region are:

, N o, 2 .. 4 o ., 16
P, = 75 /0" ~ 35 fo +25II/().10 +35 '/0‘/(}725 Tolo
(30)
2o+ 2o s -4 /;;/ +T+2pP,
+nP; - /(» ’ s 1o +/2=0. (31
T2” ZT(, 4 5 _,
Pr —=+4 T+ 7T + 35 pr +25 P T,

To+3T 1= 131,—4/,T; =0 (32)

25Pr

with the boundary conditions

LO)= [30)= TO = Ty ) =0, )
Pyx}= i —Aro~
2 T 25sin?n/5

The boundary condition on P, is obtained from
matching considerations and the use of equation (23).

3. EIGENFUNCTIONS

The correct form of the series expansion in (8) and
(9)inctudes a combination of the eigenfunctions which
identically satisfy the boundary conditions at n =0
and 5 = oo. Their existence can be investigated as
follows.

Let “A," be the eigenvalue associated with the
boundary-layer expansions (8) and (9) and C,&""F (1)
and C,&’"¢,(n) be the associated eigenfunctions, re-
spectively. C,, is the multiplicative constant, which as
pointed out by Stewartson [ 7], is associated with the
stream function upstream. Including these terms in (8)
and (9) and, substituting in (2) and (4), we get the
following linear homogeneous equations in F, and
(=44, +6) fgF,+ 40, — DF, fy —4fo F,

— F'+ ¢,

n

(34)

P ap o .

~F 1o+ ¢, /42, —1) =0 (35)
with the boundary conditions
F,(0)=F,(0)=F,(0)=(0)= (0)=0. (36)

Non-trivial solutions of these equations exist for only
particular values of /,,. The smallest such eigenvalue of
/., is 3 and the associated eigenfunctions are

1 =C(Ty—nTg) (37)

and
Fy=C(#o—nfo)

Other eigenvalues found by numerical solution of
equations (34)-(36) have values greater than 2 and
hence will not appear in our expansion (§) and (9).
Constants C, in general are indeterminate, see for
example Hieber [3]. However, in the present parti-
cular circumstance, it can be shown that at least C,
= 0.(Convected thermal energy + heat conducted in
the streamwise direction),, = total heat transferred

(33)
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from the wall to the flow, i.e.

t~—1t )dy—k —dy =g,
pc, L u(t—1t,)dy L 7 4y = aux
or

5Prq,x [ Wo+ef{ +6%4C Fy +6°f3)

0

x (Ty+eT, +C, %%}, +82T2)} dy

- szqw [‘a (
JO 5

v

Ty< 1 5 k)dn = (X

ie.

[m [T+ 1Ty + £T})

+C & (F T+ foe)
+e2(fo T+ fiT, + f3To) + hot]dn

=—1— ! [ [(Ton — To)+ho.t]dn.
Jo
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From (40),

~ o

j foTodn # 0.

Therefore (43) implies that C; = 0. Ttis thus concluded
that boundary 1ayer expansions (8)—(10) are approp-
riate up to order ¢2. It may be noted in passing that
(40)—(42) can be shown to be automatically satisfied
by the solution of governing equations for Ty, T, and
T,, respectively.

4. NUMERICAL RESULTS AND DISCUSSION
The inner region equations derived in Section 3 were
solved numerically using fourth order Runge—Kutta
method. The governing equations for f; and 7;,i = 0-2,
were integrated from 5, to n =0, using their asym-
ptotic values at large # (see Mahajan [8]), missing
initial values of f; and T; were determined. These values

25Pr . .
Spr spr” (39) and other numerical data of interest for both Pr
= 0.733 and 6.7, are summarized below:
Table 1.
£1©) T(0) 4 e An
Pr=10.733 Pr=46.7 Pr=0.733 Pr=46.7 Pr =0.733 Pr=6.7 for both Pr
i=0 0.8089306 0.356332 1.4798071 0.841702 0.50750508 0.20582254 6 0.05
i=1 —0083596  —0006691 —03614116  —0082575  —1.10914] —0.5374596 12 005
i= —0.4461 —-0.001106 —2.3230 —0.2488 2.6414 0.14178 12 0.01
The velocity and temperature profiles associated
Equating like powers of ¢ on both sides, we get with the above solutions are illustrated in Figs. 1-4
(o while the pressure distributions for both values of
O foTodn = pr (40)  Prandtl number are plotted in Fig. 5.
0 r : , ;
¢ The temperature difference across the boundary
oo layer to three terms is given by
2| (BT +fiTo)dn =0 @) g 7
Jo AT =t,—t, ‘1: To(0)+ ¢ T (0)+ &2 T,(0)] (44)
[ 5q.,
2 [(fo’Tz +T+ T = TB X [T 0) 4T, (0)+ 22 0]
Jo
5 u !
35p, (ol — )]dn =0 =—Z‘1X4’5T0(0)x‘ 3
T,(0) T,(0)
or L+e = +e? 22 43)
. ) 7,0 T T,0) (
L foTy+ fiTi+ f3To)dn =55 Ty “2)

3% C, [ (FiTo+ forn)dn =9

o

fo') To
"ITo)} dy =

ﬂa(_fé'fo)dn =0

c, r e — o~
Jo
+ fo(To

ac, [“(.fm)dn—cl [

o o

or

5C, J (foTy)dn = 0.
0

= S—Z« X45T,(0)x15(1 —0.2242295 — 1.5698¢2)

for Pr =0.733 (46a)

- % XHST,(0)x"5(1 —0.098105¢ —0.2956¢2)
for Pr=67.  (46b)

Relation (45) shows how the boundary layer 1/5th law
of surface temperature variation for uniform flux (AT
o x'/%)is modified by the higher order corrections. In
particular, for both Pr = 0.733 and 6.7, from (46a)and
(46b), the boundary-layer theory overpredicts the
value of AT, the effect being more pronounced for
lower Prandtl number.
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FiG. 1. Velocity function distributions for Pr = 0.733.

The improved local value of heat-transfer coefficient
is

4o _k 1
(to—t.) &x| To(0)+eT,(0)+&*T,(0)
L [1 DO _ (B0 Tﬁ«»ﬂ

X

eLON| O T \T0) T0).
(47)
F e so that
- e N R 0! Z(TZ(O) TZ(0)"
: c=—| 1—¢ —& - .
o >f Nt :To<0>| ‘0 T0) TOZ(O))
(48)
Substituting the numerical values of T;(0), we get
. Nty | 402242290+ 1.6294¢2
-1.2% Uxo
for Pr =0.733 (49a)
FiG. 2. Temperature function distributions for Pr = 0.733.

= 1+0.098105¢ +0.3052¢2
for Pr=67  (49b)

A4r
L~
_qu
wiN
T
—
10

F1G. 3. Velocity function distributions for Pr = 6.7.
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30 40

To,5T, T2

| — Pre67
0 2 3 4 5 6 7
n
F1G. 5. Pressure function distributions for Pr = 0.733 and Pr
=6.7.

where subscript O refers to the zeroth order boundary-
layer results. The predicted correction to local values
of Nusselt number is positive for both values of
Prandtl number.

Another important physical flow quantity of
interest is the skin friction 7, calculated as

ﬂ(g ),

v
B

#0) P3(0)
15'0) - f5'(O)
The local coefficient of skin friction ¢, defined as
1,./(pU?) becomes

T,=H .16’(0)(1+ + ) (50)

5 10, 310) l
cr=—foO) 1+e——+e" = +...|. (51)
7 =5 /ol { 750 " o)
In particular,
:"‘ = 1-0.103341¢—0.5515¢2
wi
for Pr =0.733 (52a)
= 1-0.018777¢ — 0.003104¢2
for Pr=67.  (52b)

Note that the improved estimates of the various
physical flow quantities obtained above are valid only
intheregton fore < O(1)i.e. x > O(X). In the region of
the leading edge, the functions are inapplicable. This is
also seen from the singular behavior of some of the
higher order terms in expressions (45)-(49) at x = 0.
Of these, the singularities in AT, h, and 7, are non-
integrable at x = 0 and present a difficulty in assessing
the integrated values of these quantities over the plate
length. In particular, it is of interest to know the total
drag D and total heat-transfer rate Q, between the
leading edge and local value of x. One way of obtaining
these would be to evaluate the quantities

[v 7, dx and [ 4 X,

0 JO

respectively.

As mentioned above, 7., has a non-integrable singu-
larity in the third term at x = 0 so that the drag is not
calculable by this approach. An alternate procedure
which obviates this difficulty is to obtain the drag from
considerations of global momentum and buoyancy.
This general technique was used by Imai [9] for forced
flow and by Hieber 3] for the isothermal surface in
natural convection. A global force balance gives the
following expression for total drag D between the
leading edge and local value of x

D= p%.‘( [3/5/0) + 36f7/(0)
+0(E7*) = 521,(0)+.. ]
or
VZP 3jary,—Tidpr P
D ==~ S e T 0)+ 36 (0)
+O(1) =" (0)+...] (53)

where the O(1) contribution is indeterminate and is
due to global buoyant force acting throughout the
leading edge region. For Pr=0.733 and Pr=16.7,
equation (53) is rewritten as,

D 2 J1'(0) 7 2 13'0)
Dy =1+ 700) +0(7*)=T¢? 70) +...
=1-024113e+0(c"*)+3.860362 +. ..
for Pr =0.733
=1-0.0438146+ 0 (7 +)+0.02173:%2 +. ..
for Pr = 6.7.

The above results indicate that the zeroth order
boundary layer overpredicts the drag for both air (Pr
= 0.733) and water (Pr = 6.7) as shown by the first
order correction. Further, an indeterminacy of O(1)
occurs before the next order correction, as was also
found by Hieber [ 3] for the isothermal case. However,
there is an important difference between the two
problems. For an isothermal surface, first eigenfun-
ction was shown to make an unbounded contribution
todrag D, see Hieber [3]. For the uniform flux surface,
however, there is no such unbounded term because, as
shown in Section 3, the contribution due to the leading
eigenfunction is identically zero.



Higher order approximations to convection flow 355

The wall heat flux g,, in the present problem is
constant so that Q is simply g, x. This result is in
contrast to the isothermal surface condition where ¢,
evaluated on the basis of perturbation solution,
has a non-integrable singularity at x =0 so that @
= |+ 4, dxis not determinable. Hieber [ 3] avoided this
difficulty by determining Q from global energy con-
siderations. It may be noted in passing that in Section 3
of [3], 0 and a, should read

~

i' ct

o

JBL ox

dyand a, = ‘.

Q

Q= pcpj u{t—t, ydy—k
BL

[Pr(fyT; + f2Ty) ~ 5 Ty] dnp. respectively. The under-
lined terms are due to conduction in the streamwise
direction and are not included in the expression in [3].
Further, it is easily shown from the governing
equations for 7, {equation {2.29) in [3]}, that a,
= 4/37;(0). The numerical value of the corrected a,,
however, is the same as given by Hieber [3]. Theabove
omissions are due to an oversight.

o

5. CONCLUDING REMARKS

It is of interest to determine the pattern of inflow to
the boundary region, i.e. entrainment. Brodowicz [11]
noted that this inflow may be unsteady in character
and that it influences the flow in the boundary region,
particularly in the region of the leading edge when the
boundary region velocities are low. For various lead-
ing edge configurations, different flow patterns were
observed. These are shown in Fig. 6. taken from [ {1].
Although not shown in the figure, the plates 2 and 3
also were found to exhibit the flow pattern changes
similar to those shown for plate 1.

The entrainment velocity field, outside the boun-
dary region, is determined in our analysis by the outer
solution ¥ = i, + 1, where %, and ¢}, are defined in

Plate Pattern of flow
U\“ {Symmetrical}
~—
No. 1 W
1y
No. 2 Q\ {Symmetrical}
~—
~—
No. 3 3“ (Symmetrical)

FiG. 6. Flow pattern for plates with different leading edge
configurations (from [11]).

equations (20) and (28), respectively. This solution is
valid everywhere in the outer inviscid region except
for a small region around the leading edge where
x = 0(X). The streamline pattern calculated from our
results is similar to the symmetrical pattern shown in
Fig. 6. Recall that the solution obtained here is for
symmetric flow as indicated by the boundary con-
ditions (6). The present higher order boundary-layer
analysis which is valid at moderate values of G* thus
seems to correctly predict entrainment, even in the
region of the leading edge where the analysis is not
completely applicable. The unsteady character of the
inflow and other unsymmetric flow patterns observed
in [1] are outside the scope of the present analysis.

A few other comments about the outer solution are
in order. Note that the first order external pressure
term P, isindependent of angular co-ordinate # and so
is the corresponding resultant velocity w. Therefore, a
single hot-wire probe, traversing along a radius, may
be used to map the whole outer flow fluid, to the first
order.
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APPROXIMATIONS D'ORDRE ELEVE POUR LA CONVECTION
NATURELLE SUR UNE SURFACE VERTICALE AVEC FLUX UNIFORME

Résumé —On présente une analyse de perturbation d'ordre élevé appliquée a une couche limite de
convection naturelle sur une surface verticale et semi-infinie, avec flux uniforme. En utilisant une tech-
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nique asymptotique, trois développements internes et externes ont ét¢ obtenus. On etudie aussi les valeurs

propres et leurs fonctions propres associées aux développements internes et il est montré que leur

contribution est identiquement nulle. Les résultats numériques, pour Pr = 0,733 et 6,7, montrent que les

corrections, d’ordre éleve, de la différence de température locale et de frottement local pariétal sont

négatives mais qu'elles sont positives pour le nombre de Nusselt local. Des considérations de quantité

de mouvement globale et de gravité montrent une indétermination O (1) dans Yexpression de la trainée
totale.

NAHERUNGEN HOHERER ORDNUNG FUR NATURLICHE
KONVEKTIONSSTROMUNG UBER EINE SENKRECHTE FLACHE

Zusammenfassung—Fiir eine Konvektionsstromung iber eine halbunendliche, senkrechte Oberflache mit
gleichmiBiger Stromung wird eine Storungstheorie fiir Grenzschichteffekte hoherer Ordnung angegeben. Unter
Verwendung der asymptotischen Abgleichtechnik wurden dreigliedrige innere und duflere Reihenentwicklungen
erreicht. Eigenwerte und ihre Eigenfunktionen wurden in Verbindung mit der inneren Reihenentwicklung
ebenfalls untersucht. Es konnte gezeigt werden, daB ihr Beitrag zu dieser dreigliedrigen Reihenentwicklung
Identisch O ist. Die numerischen Ergebnisse fiir Pr = 0,733 und 6,7 zeigen, daBl Korrekturterme hoherer
Ordnung fiir die Ortliche Temperaturdifferenz und die oOrtliche Wandreibung negativ sind, jedoch fiir die
Nusselt-Zahl positiv. Betrachtungen des globalen Moments und des Auftriebs zeigen eine Unbestimmtheit von
O(1) im Ausdruck fiir den gesamten Strémungswiderstand.

[TPUBJIMXXEHWUA BOJIEE BBICOKOIO NMOPAOKA OJ18 PACUETA ECTECTBEHHOM
KOHBEKIIWHY BA0OJ1b BEPTUKAJIbBHOW MOBEPXHOCTHU ITPU YCJIOBUU
PABHOMEPHOT'O TEIJIOBOTO INOTOKA

Annorauus — [pencrasineHo uccnenosaHue BnusiHuA 3¢dexTos OGosiee BLICOXOro NOpAAKa MNPH
aHAJM3€ BO3MYLUCHHI MOrPaHUYHOTO CJIOS IUIS Cliyyas KOHBEKTHBHOIO TEYEHHs BIONb TOnyOec-
KOHEYHO! BEPTHKANbHOM MOBEPXHOCTH [IPH YC/IOBUM paBHOMEPHOIO TEILTOBOro HNOTOKA. ACHMNTO-
THYECKMM METO/IOM MOJIYYEHBI TPEXUJIEHHbIE BHYTPEHHHE W BHELIHMWE pasfioxkenus. ViccrenosaHbl
TaKxe COOCTBEHHBIC 3HAYEHHS W HMX COOCTBEHHblE GYHKUMHM, CBA3AHHLIE C BHYTPEHHHMH pa3jioxe-
HUSIMM, H [OKA3aHO, YTO MX BKNaJ B TPEXUIEHHbIE PA3/TOXEHHS TOXIECTBEHEH Hy0. UHCNeHHbie
pe3ynbTaThl [MOKa3biBalOT, YTO npH Pr=0,733 u 6,7 nonpaBku Oonee BLICOKOro TOpAdxa AJis
JIOKaIbHOW Pa3HOCTHM TEMMEPATYPbI H JIOKABHOTO MOBEPXHOCTHOTO TPEHUA NMPUHAMAKOT OTpMLA-
TeNbHOE 3HAYEHHWE, a [UIA NoKanbHOro uucna Hyccenbra — mnonoxurensHoe. AHanu3 obuiero
KOJTMMECTBA NBHXXEHHS M TOIBEMHBIX CH/T YKa3bLIBAET HA HeompeaeseHHOoCTh nopsaka 0(1) B sbipa-
KEHHUM [J1s TIOJTHOTO COMPOTHB/ICHHS.



