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Abstract-Perturbation analysis of higher order boundary-layer effects for convection Row over a semi- 
infinite vertical uniform flux surface is presented. Using asymptotic matching technique, three term inner and 
outer expansions have been obtained. Eigenvalues and their eigenfunctions associated with the inner 
expansions have also been investigated and it has been shown that their contribution to these three term 
expansions is identically zero. The numerical results for Pr = 0.733 and 6.7 show that the higher order 
corrections to the local temperature difference and the local skin friction are negative but are positive to the 
focal Nusselt number. Considerations of global momentum and buoyancy indicate an indeterminacy of O(l) 

in the expression for total drag 

NOMENCLATURE 

boundary layer; 
specific heat of the fluid ; 
total drag on plate between leading edge 
and local .Y (per side per unit width); 

g&A T.x3 
local Grashof number, 7 ; 

local flux Grashof number:‘* ; 

modified Grashof number, 4 (2 )‘ ‘4 ; 

modified flux Grashof number, 

gravitational acceleration; 
heat-transfer coefficient; 
thermal conductivity; 
local Nusselt number, h.~/k: 
pressure ; 

Prandtl number ti . 
‘k’ 

local heat flux from plate; 
total heat-transfer rate from plate 
between leading edge and local x 
(per side and per unit width); 
polar radial coordinate; 
temperature ; 
temperature of ambient fluid; 
= (t-&/AT); 
.Y component of velocity ; 
y component of velocity; 

-tPresent address: Engineering Research Center, Western 
Electric, P.O. Box 900, Princeton, NJ 08540, U.S.A. 

-T vertical coordinate : 

?‘. horizontal coordinate. 

Greek symbols 

BO coefficient of thermal expansion; 
6, characteristic boundary-layer thickness; 
AT, characteristic temperature difference 

across the boundary layer; 
F > perturbation parameter, 3 6,f.x = 5/G*; 

‘?> 55 .,)/(i ; 
0, angular coordinate measured from plate; 

l-l> dynamic viscosity; 
v, the kinematic viscosity; 

P? density of fluid; 
Y’, stream function; 

eJ, resultant flow velocity. 

I. INTRODUCTION 

THE ANALYTICAL studies of higher order boundary- 
layer effects for natural convection flow around a semi- 
infinite vertical isothermal surface are many [l-4]. In 
all these studies, the classical boundary-layer solution 
due to Pohlhausen [5] is taken as the leading term in 
the asymptotic expansion for large Grashof number of 
the full solution of the problem, with the expansion 
parameter as 1 /G. 

Yang and Jerger [l] obtained first order corrections 
both for the semi-infinite and finite vertical plate. Their 
calculated correction to the Nusselt number obtained 
from the boundary-layer theory is negative. This, as 
pointed out by Gebhart in a comment following their 
paper, is at variance with the experimental data at low 
Grashof numbers, which indicates values of Nusselt 
number higher than predicted by boundary-layer 

549 



550 R. L. MAHAJAN and B. GEBHAKT 

theory. This matter was later taken up by Hieber [3], 
who on the basis of global energy considerations 
showed that the boundary-layer expansion gives rise 
to an additional term which results in a net positive 
first order correction to the total heat-transfer rate. He 

also pointed out an error due to improper matching in 
the second order correction obtained earlier by Kad- 
ambi 121 and, in addition, obtained the first three 
eigenvalues and the corresponding eigenfunctions ap- 
pearing in the boul~dary-lawyer expansion. The multip- 
licative constants associated with these ei~enfunctions 
are, however, indeterminate. The analysis of Riley and 
Drake [4] issimilar to that of Kadambi [2] and has the 
same improper matching conditions in the second 

order equations. 

All of the above studies are for a surface with 
uniform temperature. However. an important practi- 
cal and experimental circumstance in many natural 
convection flows is that generated adjacent to a surface 
dissipating heat uniformly. There is no prior in- 
vestigation of the higher order effects for this con- 
dition. In the present paper. we obtain perturbation 

solutions, in terms of perturbatjoll parameter, 4: = 
5/G*. Matched asymptotic expansions are used to 
construct inner and outer expansions for velocity, 
temperature and pressure. The first three terms of the 
series are calculated for both air (Pr = 0.733) and 
water (Pr- = 6.7). The eigenfunctions associated with 
the bout~dary-lawyer expansions are considered and it is 
shown that their contribution to the solution is 

identically zero. 

2. iS\‘\IPTOTIC ESl?4\SIO\S 

The present problem is formulated on the basis of a 
semi-infinite vertical surface with the origin at the 
leading edge. The z axis is vertically upward and 1’ is 

perpendicular to the surface. Heat is dissipated uni- 
formly at the surface. Employing the Boussinesq 
approximation. neglecting the viscous dissipation and 

the pressure terms in the energy equation, the govern- 
ing equations are: 

u=c-0, f--t,, p-p, asf’+m ~~tldupstream. (7) 

Analysis of equations (l)-(4) indicates that a small 
term of O(I!G*) multiplies the highest derivative 
terms, those representing diffusion of momentum and 
of the thermal energy. When G* -+ co these terms 
disappear, and no solution can then satisfy all the 
boundary conditions. This is a singular perturbation 

situation which may be treated by the method of 
matched asymptotic expansion. 

The appropriate inner expansions (without the 
ei&enfunctions to be considered later) in the boundary 
layer, and the outer expansions, are: 

inner: 

= A~[T,(9)+cT,ftl)+~‘T,(~)+...] (9) 

P-P, = pU2P(r\, E) = pU2[c2P&)+. .] (10) 

outer: 

Y = gJ+iJ,+c’;z+... (1I) 
~ -.. 

t--t, = 7;+7.,+&+... (12) 

p-p, = P,+P,+P2+... (13) 

where C’ = YG *2i5.~, d = S,y/G*, A.7’= cl&/k and 11 

= j!ii. The perturbation parameter, c = ii/s = 5/G*, is 
determined by consideration of the order of magnitude 
of the normal velocity component at the outer edge of 

the boundary layer. 

2.1. Pertwhtrtiort qwtti0rt.s 

We now define streamfunction Y so that II = Y,and 
c = -Y,. The continuity equation, (I ), is then auto- 
matically satisfied. From {8), the velocity components 

u and u are written as 

Lf = I: ( 1” + f” + r’f’ -t- ,” I ’ 2 I” ) (14) 

-u = u[(4fb-.ld~)r:-1:2,1;‘)~+...]. (15) 

Equations (Z)-(4) are now evaluated in terms of 
variables defined in (9), (lo), (14) and (15) and 
perturbation equations are obtained by collecting 
terms with like powers of t:. The following successive 
approximations are obtained. 

Zerotfr c&er. Collecting terms of the order ?, we 
obtain the following classical uniform flux boundary- 
layer equations. 

2: i- ilf; T; - To,/;; = 0 (17) 

subject to boundary conditions: 

.f’(O) = ,f ‘(0) = T,(X) = ./;j(rx. 1 = T;(o)+ 1 = 0‘ 
(18) 

In the outer region, it can be easily shown, see for 
example, Kadambi [2), that $,, = 0 = T0 = P,. 

First order. To obtain first order equations, it is first 
necessary to match the zeroth order boundary-layer 



solution $0 to the first order outer solution 3,. This, as 

shown in [I-J], leads to 
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Finally, the second order governing equations for 

the boundary layer region are: 

rl ,111 2 ‘I, 4 

where A, = fb(cc ) and the values of the stream 
function at 0 = 0 and 0 = n correspond to the match- 
ing and boundary condition respectively. Solution to 

(19) is given by 

i x5 sin+(& 

Using Bernoulli’s equation in the outer inviscid region, 

p 
1 

= +)(~2 = _+ (,m2 1’ 2 x 2i5 
2 

i Ii 1 2iiFqx u 
(21) 

Further, for the outer, isothermal region, r, = 0. 

Noting that, as 0 + 0, I’ = _x[ I + O(r-:‘$)] and Q = ~1 
+O(c3$), the behavior of li;, and P, in the matching 

region is determined to be 

$1 
4 4ll 4 

R-O 
= UdA, 1 -5i:r/coti +50i:2~2+.,. 

I 

(22) 

The boundary condition on P, is obtained from 
matching considerations and the use of equation (23). 

3. EICENFUNCTIONS 

and 

r’ ‘e -0 
‘~($A,)‘c”[I +O(c2q2)+ . ..I. = -3.2 

From the inner and outer expansions of the stream 
functions, equations (8) and (1 l), corresponding ex- 
pansions for the velocity components can be derived. 
Matching of the two term inner expansion of the u 
component as r--t cc;, 0 # 0, with the concomitant 
two term outer expansion as 6, ---t 0, gives ,f;‘(co) = 
$A,cot x/5. The first order inner problem may be 

written as: 

The correct form of the series expansion in (8) and 
(9) includes a combination of the eigenfunctions which 

identically satisfy the boundary conditions at ‘I = 0 
and q = co. Their existence can be investigated as 

(23) follows. 
Let “i.,” be the eigenvalue associated with the 

boundary-layer expansions (8) and (9) and CJ’~~F,(~) 
and C,c’$,(~) be the associated eigenfunctions, re- 
spectively. C,, is the multiplicative constant, which as 

pointed out by Stewartson [7], is associated with the 
stream function upstream. Including these terms in (8) 
and (9) and, substituting in (2) and (4), we get the 
following linear homogeneous equations in F, and n. 
(-41,+6),f;F,+4(i.,- 1 )F,,f~‘-4foF~~ 

= iy+& (34) 
,f;“’ + +/f;“fo - &‘.f;’ + T, = 0 (24) 

(25) 

subject to boundary conditions: 

./l(O) = 0 = .f;‘(O) = T,(W) = T;(o), 
f,‘(m) = $A,cotrc/S 

(26) 

In particular, from (24) to (26)J; - $A,qcot z/5+ A, 

where A 1 is a numerically determined constant. 
Second order. Knowing the asymptotic behavior of 

1; as q+ xc, and matching the two term inner and 
outer stream function, it is easily deduced that 

V2$, = 0, ii;2,1,=o, = 51’A,, $2(,,=n) = 0. (27) 

The solution to (27) is 

3;2 = 5A,v!l-;-). 

As before, Bernoulli’s equation gives 

$+$&+4F,T;(l-I,) 

-F~To+~,,f~(4i,- 1) = 0 (35) 

with the boundary conditions 

F,(O) = F!(O) = F;(W) = ,;(O) = ,,(m) =O. (36) 

Non-trivial solutions of these equations exist for only 
particular values of i.,. The smallest such eigenvalue of 
i., is 2 and the associated eigenfunctions are 

, = C,(To-VT;) (37) 

and 

F, = C,(410-rzlb). (3X) 

Other eigenvalues found by numerical solution of 
equations (34)-(36) have values greater than 2 and 
hence will not appear in our expansion (8) and (9). 

Constants C, in general are indeterminate, see for 
example Hieber [3]. However, in the present parti- 
cular circumstance, it can be shown that at least C, 
EE O.(Convected thermal energy+ heat conducted in 

(29) the streamwise direction),,, = total heat transferred 

/,;“+ /;z = 0. (31) 

-A To+3T, ,;-,ir,,-4,2T; = 0 (32) 

with the boundary conditions 

.f;(o) = ,/j'(0) = T;(O) = T;(~x ) = 0, 
(33) 
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from the wall to the flow, i.e. From (40), 

i 

a 

PC, u(t-rt,)dy-k 
-0 

(= j; To dq # 0. 
.O 

Therefore (43) implies that C, = 0. It is thus concluded 
that boundary layer expansions (8))( 10) are approp- 

riate up to order c*. It may be noted in passing that 
(40)-(42) can be shown to be automatically satisfied 
by the solution of governing equations for To, T, and 
T2, respectively. 

i.e. 
4. NUMERICAL RESULTS AND DISCUSSION 

[(fdW+d/‘;T, +.fb:T, 1 
The inner region equations derived in Section 3 were 

solved numerically using fourth order RungeeKutta 

+ C,E~‘~(F; To +.f;c ‘I) method. The governing equations forj; and T, i = O-2, 

+~~(,fb’T~+,f;T, +,f;T,)+h.o.t]d~ were integrated from qe to ‘1 = 0, using their asym- 

[(T;// - To)+ hat.] dq. 
ptotic values at large g (see Mahajan [8]), missing 
initial values of,fi and 7; were determined. These values 

(39) 
and other numerical data of interest for both Pr 
= 0.733 and 6.7. are summarized below: 

Table 1. 

Pr=O.73?(‘)Pr=6.7 Pr=0.7337;(0)Pr=6.7 Pr=O.733 Ai Pr=6.7 {kbothi” 

i=O 0.8089306 0.356332 I .479807 I 0.841702 0.50750508 0.20582254 6 0.05 
i=l -0.083596 - 0.00669 I -0.3614116 -0.082575 - 1.109141 -0.5374596 12 0.05 
i=2 - 0.446 1 -0.001106 - 2.3230 -0.2488 2.6414 0.14178 I2 0.01 

The velocity and temperature profiles associated 

Equating like powers oft: on both sides, we get with the above solutions are illustrated in Figs. l-4 

m 

while the pressure distributions for both values of 
(.O 

I . 

r 
.f;Todrl = & (40) Prandtl number are plotted in Fig. 5. 

.O The temperature difference across the boundary 

1 
K 

layer to three terms is given by 

&I: (.fdTr +.L’T,)dq = 0 (41) 
.O AT = to-r, = “i;” To(0)+cT,(O)+i:‘T2(O)] (44) 

E2 : (.fo:T2+.f’;T $-AT,) =+x’ 5.~1 5[~o(0)+c~,(~)+~2~,(0)] 

or 

c 
om (16T2 +.L’T, +f‘;To)‘b = & To 

X ,+E$j+C’G/ 

I 

(45) 
0 0 

(42) 
= + X4’5To(0).u1’5(1 -0.224229c- 1.5698~~) 

514. 

i 
m (F’,T,+f; ,,)drl = 0 

for Pr = 0.733 
F .c, 

(46a) 

*O 

C, 
r 

a ((4f;-fd-G’)G 

= 2 X4!‘To(0).x’ 5(1 -O.O98105c-0.2956~~) 

for Pr = 6.7. 
-0 

(46b) 

+f;(& - eG)) dq = 0 Relation (45) shows how the boundary layer i/5th law 
a 

d 4CI 
i 

(.fdTo)da-C, a; 
i 

q-(.GT,)dq = 0 
of surface temperature variation for uniform flux (AT 

.O ,o dq cc x1/5) is modified by the higher order corrections. In 
particular, for both Pr = 0.733 and 6.7, from (46a) and 

or 

5CI 
s 

OcI (f;T,)dq = 0. 

(46b), the boundary-layer theory overpredicts the 

(43) value of AT, the effect being more pronounced for 
0 lower Prandtl number. 
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-.04 7) 

FIG. I. Velocity function distributions for Pr = 0.733. 

The improved local value of heat-transfer coefficient 
is 

i6r 

FIG. 2. Temperature function distributions for Pr = 0.733 

I 1 

EX To(o)+&T,(o)+&zT,(o) 1 

so that 

1 
Nu, = __ 

CT,(O) 
, _t;T,o_E2 

T,(O) i 
(48) 

Substituting the numerical values of q(O), we get 

NM. 
L = 1 + 0.224229~ + 1.6294~’ 
N&0 

for Pr = 0.733 (49a) 

= I+ 0.098 10% + 0.3052~~ 

for Pr = 6.7 (49b) 

FIG. 3. Velocity function distributions for Pr = 6.7. 
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-06 1 

FIG. 4. Temperature function distribution for Pr = 6.7 

-.24- 

FIG. 5. 

0' i 2 3 4 5 6 7 

? 

Pressure function distributions for Pr = 0.733 and Pi 
= 6.7. 

where subscript 0 refers to the zeroth order boundary- where the O(1) contribution is indeterminate and is 

layer results. The predicted correction to local values due to global buoyant force acting throughout the 

of Nusselt number is positive for both values of leading edge region. For Pr = 0.733 and Pr = 6.7, 

Prandtl number. equation (53) is rewritten as, 

Another important physical How quantity of 
interest is the skin friction T,,, calculated as 

so that 

The local coefficient of skin friction c’, defined as 
r,./(pU’) becomes 

5 

/ 

~ 2 A’(O) f;‘(o) 
c,=;.fd’(O) l+r::l.,(0)+C m+... 

I 
(51) 

In particular, 

Tw - = t-0.103341&-0.5515E~ 
75,O 

for Pr = 0.733 (52a) 

= 1-0.018777~0.003104~~ 

for Pr = 6.7. (52b) 

Note that the improved estimates of the various 
physical flow quantities obtained above are valid only 
in the region for c < O( 1) i.e. s > O(X). In the region of 
the leading edge, the functions are inapplicable. This is 
also seen from the singular behavior of some of the 
higher order terms in expressions (45)-(49) at Y = 0. 
Of these, the singularities in AT, h, and z,,. are non- 
integrable at .Y = 0 and present a difficulty in assessing 
the integrated values of these quantities over the plate 
length. In particular, it is of interest to know the total 
drag D and total heat-transfer rate Q, between the 
leading edge and local value of x. One way of obtaining 
these would be to evaluate the quantities 

r 

* I 
r,,ds and 

.O i 
4,,..y, 

.0 

respectively. 
As mentioned above, T,,, has a non-integrable singu- 

larity in the third term at .Y = 0 so that the drag is not 
calculable by this approach. An alternate procedure 
which obviates this difficulty is to obtain the drag from 
considerations of global momentum and buoyancy. 
This general technique was used by Imai [9] for forced 
flow and by Hieber [3] for the isothermal surface in 
natural convection. A global force balance gives the 
following expression for total drag D between the 
leading edge and local value of Y 

D = p ; .Y [&‘(O) + $c;r;‘(o, 

+ O(C”“) - 5c2,f;‘(o) + .] 

or 

+0(l)-r:“Jf;‘(O)+...] (53) 

= I-0.24113~+0(c”“)+3.8603c’+... 

for Pr = 0.733 

= 1-0.043H14c+0(2:“‘)+0.021731:2+... 

for Pr = 6.7. 

The above results indicate that the zeroth order 
boundary layer overpredicts the drag for both air (Pr 
= 0.733) and water (pr = 6.7) as shown by the first 
order correction. Further, an indeterminacy of O(l ) 
occurs before the next order correction, as was also 
found by Hieber [3] for the isothermal case. However, 
there is an important difference between the two 
problems. For an isothermal surface, first eigenfun- 
ction was shown to make an unbounded contribution 
to drag D, see Hieber [3]. For the uniform flux surface, 
however, there is no such unbounded term because, as 
shown in Section 3, the contribution due to the leading 
eigenfunction is identically zero. 



Higher order approximations to convection flow 55.5 

The wall heat flux y,, in the present problem is 
constant so that Q is simply q,,.s. This result is in 

contrast to the isothermal surface condition where q,,., 

evaluated on the basis of perturbation solution, 

has a non-integrable singularity at .Y = 0 so that Q 
= S%q,,d.u is not determinable. Hieber [3] avoided this 
difficulty by determining Q from global energy con- 
siderations It may be noted in passing that in Section 3 

of [3], Q and (I~ should read 

[Pr(,fiT, +j;‘T,) _a7J drf, respectively. The under- 
lined terms are due to conduction in the streamwise 
direction and are not included in the expression in E-i]. 

Further, it is easily shown from the governing 
equations for Tz {equation (2.29) in [3]), that a2 
= 4/3T,‘(O). The numerical value of the corrected a,, 
however, is the same as given by Hieber C-11. The.above 
omissions are due to au oversight. 

5. CONCLC‘DING REhIARI(S 

It is of interest to determine the pattern of inflow to 

the boundary region, i.e. entrainment. Brodowicz [Ii] 
noted that this inflow may be unsteady in character 

and that it influences the Row in the boundary region, 
particularly in the region of the leading edge when the 
boundary region velocities are low. For various lead- 
ing edge configuratiolls. different flow patterns were 
observed. These are shown in Fig. 6, taken from [ll]. 

Although not shown in the figure, the plates 2 and 3 
also were found to exhibit the flow pattern changes 
similar to those shown for plate I. 

The entrainment velocity field, outside the boun- 
dary region, is determined in our analysis by the outer 
solution Y = $, + g2 where IJ, and I$~ are defined in 

Plate Pattern of flow 

o= (S~mmetfic~l) 

No. I 
a/ 

v’ - 

a \ - 

No. 2 IJ= asymmetrical ) 

No. 3 35 (Symmetrical) 

Fit;. 6. Flow pattern for plates with different leading edge 
~~n~~ur~lti~n5 (from [I I]). 

equations (20) and (28), respectively. This solution is 

valid everywhere in the outer inviscid region except 

for a small region around the leading edge where 
.Y = O(X). The streamline pattern calculated from our 

results is similar to the symmetrical pattern shown in 
Fig. 6. Recall that the solution obtained here is for 

symmetric flow as indicated by the boundary con- 

ditions (6). The present higher order boundary-layer 
analysis which is valid at moderate values of G* thus 
seems to correctly predict entrainment, even in the 
region of the leading edge where the analysis is not 
completely applicable. The unsteady character of the 
inflow and other unsymmetric flow patterns observed 
in [l] are outside the scope of the present analysis. 

A few other comments about the outer solution are 
in order. Note that the first order external pressure 
term P, is independent of angular co-ordinate Band so 
is the corresponding resultant velocity W. Therefore, a 
single hot-wire probe, traversing along a radius, may 
be used to map the whole outer flow kid, to the first 
order. 
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APPROXIMATIONS D’ORDRE ELEVE POUR LA CONVECTION 
NATURELLE SUR UNE SURFACE VERTICALE AVEC FLUX UNJFORME 

Rbssumi On presente une analyse de perturbation d’ordre eleve appliquie a une couche limite de 
convection naturelle sur une surktce verticale et semi-infinie. avec flux uniforme. En utilisant une tech- 
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nique asymptotique, trois dtveloppements internes et externes ont ttt obtenus. On &die aussi les valeurs 
propres et leurs fonctions propres assocites aux dCveloppements internes et il est montrC que leur 
contribution est identiquement nulle. Les rlsultats numtriques, pour Pr = 0,733 et 6,7, montrent que les 
corrections, d’ordre Clevl, de la diffkrence de tempirature locale et de frottement local parittal sont 
n6gatives mais qu'elles sont positives pour le nombre de Nusselt local. Des consid&ations de quantite 
de mouvement globale et de gravitt montrent une inditermination 0 (I) dans I’expression de la train&e 

totale. 

NliHERUNGEN HdHERER ORDNUNG FiiR NATiiRLICHE 
KONVEKTION~~TR~~MUNG UBER EINE SENKRECHTE FLACHE 

Zusammenfassung-Fiir eine KonvektionsstrGmung iiber eine halbunendliche, senkrechte OberflSiche mit 
gleichmal3iger Striimung wird eine StGrungstheorie fiir Grenzschichteffekte haherer Ordnung angegeben. Unter 
Verwendung der asymptotischen Abgleichtechnik wurden dreigliedrige innere und Pul3ere Reihenentwicklungen 
erreicht. Eigenwerte und ihre Eigenfunktionen wurden in Verbindung mit der inneren Reihenentwicklung 
ebenfalls untersucht. Es konnte gezeigt werden, daB ihr Beitrag zu dieser dreigliedrigen Reihenentwicklung 
Identisch 0 ist. Die numerischen Ergebnisse fiir Pr = 0,733 und 6,7 zeigen, da8 Korrekturterme h(iherer 
Ordnung fiir die ijrtliche Temperaturdifferenz und die Grtliche Wandreibung negativ sind, jedoch fiir die 
Nusselt-Zahl positiv. Betrachtungen des globalen Moments und des Auftriebs zeigen eine Unbestimmtheit von 

O(l) im Ausdruck fiir den gesamten Striimungswiderstand. 

I-IPW6JIM~EHHJl 6OJIEE BbICOKOI-0 nOP5IAKA ,QJI5I PACqETA ECTECI’BEHHOQ 
KOHBEKI@iW BAOJIb BEPTMKAJIbHOR I-IOBEPXHOCTM I-IPM YCJ’IOBMM 

PABHOMEPHOI-0 TEnJIOBOI-0 I-IOTOKA 

.kHOTaUHR--penCTaBfleHO HCCneLlOBaHkie BJlki?HkiJl 34@KTOB 6onee BbICOKOrO nOpBnKa llpki 
aHaTIH3e BO3MyIUeHHk nOrpaHA'tHOr0 CJlOR LUIR CJly'iaB KOHBeKTWBHOl-0 TeYeHAB BAOnb nony6ec- 
KOHe‘iHOfi BepTHKanbHOti LIOBepXHOCTIl npH yCnOBAA paBHOMepHOr0 TellnOBOrO nOTOKa. k&iMnTo- 
TH'ieCKUM MeTOflOM nOny'IeHb1 TpeXQleHHbIe BHyTPeHHUe U BHeIllHUe pa3JlO)KeHWfl. kkCflellOBaHb1 
TaKme CO6CTBeHHbIe 3Ha'IeHAB A HX CO6CTBeHHbIe +yHKUkili, CBR3aHHble C BHyTpeHHHMH pa3JlOxe- 
HHRMU, A noKa3aH0, 4To ux BKnan B TpexrneHHbre pa3noxcewin TowwzTBeHeH Hynzo. YucneHHble 
pe3yJlbTaTbl nOKa3bIBaWT, 'iT0 npki Pr=0,733 A 6,7 nOnpaBKH 6onee BblCOKOrO IlOpWlKa LlJlR 

nOKanbHOi% pa3HOCTII TeMllepaTypbl U nOKWlbHOr0 nOBepXHOCTHOr0 TpeHHSl IIp&iHHMElK3T OTpkiIIa- 

TenbHOe SHaWHWe, a nna nOKanbHOr0 YACna HyCCenbTa - nonoxaTenbHoe. hanus o6mero 
KOJIHWCTBa IIBHXCeHHB B nOnl.eMHblX CAJI yKa3blBaeT Ha HeOnpefleJIeHHOCTb IlOpBnKa 0(l) B BbIpa- 

XeHnn nnn nonHor0 conpoTnBneBnB. 


